The de Rham Witt complex and crystalline cohomology

November 20, 2018

If X / k is a smooth projective scheme over a perfect field k, let us try to find an explicit quasi-isomorphism $R u_{X / W *}\left(\mathcal{O}_{X / S}\right) \cong \mathcal{W} \Omega_{X} .{ }^{1}$ To do this we need an explicit representative of $R u_{X / W *}\left(\mathcal{O}_{X / S}\right)$ together with its Frobenius action. The standard way to do this is to choose an embedding $X \rightarrow \tilde{Y}$, where \tilde{Y} / W is smooth and endowed with a lift $\phi_{\tilde{Y}}$ of Frobenius. For example, if X is quasi-projective, we can let \tilde{Y} be a projective space \mathbf{P}^{N} endowed with the endomorphism defined by raising coordinates to their p th power. (If X is not projective, one can use local liftings and simplicial methods; which we shall not discuss here.) Once such an embedding ($\left.\tilde{Y}, \phi_{\tilde{Y}}\right)$ is chosen, let Y be its reduction modulo p, let \tilde{D} denote the (p-adically complete) PD-envelope of X in \tilde{Y} and let D be its reduction modulo p. Then the $\mathcal{O}_{\tilde{Y}}$-module $\mathcal{O}_{\tilde{D}}$ admits an integrable connection [1, 6.4], whose corresponding de Rham complex $\mathcal{O}_{\tilde{D}} \otimes \Omega_{\tilde{Y} / W}$ is a representative of $R u_{X / W *}\left(\mathcal{O}_{X / W}\right)$ [1, 7.1]. The assumed lifting $\phi_{\tilde{Y}}$ of F_{Y} extends uniquely to a PD-morphism $\phi_{\tilde{D}}$ of \tilde{D}. This morphism induces an endomorphism $\dot{\tilde{D}}_{\tilde{D}}$ of $\mathcal{O}_{\tilde{D}} \otimes \Omega_{\tilde{Y} / W}$. Since X and \tilde{Y} are smooth, the terms of this complex are p-torsion free and p-adically complete. The endomorphism $\phi_{\tilde{D}}$ is $\mathcal{O}_{\tilde{D}}$-linear and ϕ_{D} vanishes on $\Omega_{Y / k}^{1}$, hence $\phi_{\tilde{D}}^{1}$ is divisible by p and $\phi_{\tilde{D}}^{i}=p^{i} F$ for a unique $\mathcal{O}_{\tilde{D}}$-linear endomorphism F of $\mathcal{O}_{\tilde{D}} \otimes \Omega_{\tilde{Y} / W}^{i}$. Thus $\left(\mathcal{O}_{\tilde{D}} \otimes \Omega_{\tilde{Y} / W}, d, F\right)$ is a Dieudonné complex.

[^0]Theorem 1 Let X / k be a smooth scheme over a perfect field k, embedded as a locally closed subscheme of a smooth \tilde{Y} / W which is endowed with a lifting $\phi_{\tilde{Y}}$ of the Frobenius endomorphism of its reduction Y / k modulo p. Then the Dieudonné complex $\left(\mathcal{O}_{\tilde{D}} \otimes \Omega_{\tilde{Y} / W}, d, F\right)$ constructed above is in fact a (torsion-free) Dieudonné algebra. Moreover, the natural map

$$
\left(\mathcal{O}_{\tilde{D}} \otimes \Omega_{\tilde{Y} / W}, d\right) \rightarrow \mathcal{W} \operatorname{Sat}\left(\mathcal{O}_{\tilde{D}} \otimes \Omega_{\tilde{Y} / W}, d\right)
$$

is a quasi-isomorphism, and the natural map

$$
\mathcal{W} S a t\left(\mathcal{O}_{\tilde{D}} \otimes \Omega_{\tilde{Y} / W}, d, F\right) \rightarrow\left(\mathcal{W} \Omega_{X}^{\cdot}, d, F\right)
$$

is an isomorphism. Thus, $\left(\mathcal{W} \Omega_{X}^{\cdot}, d\right)$ is a representative of $R u_{X / W *}\left(\mathcal{O}_{X / W}\right)$.
Proof: To see that $\left(\mathcal{O}_{\tilde{D}} \otimes \Omega_{\tilde{Y} / W}, D, F\right)$ is a Dieudonné algebra, we must show that $\phi_{\tilde{D}}: \tilde{D} \rightarrow \tilde{D}$ reduces to the Frobenius endomorphism F_{D} of $D[2$, 3.1.2]. The reduction ϕ_{D} of $\phi_{\tilde{D}}$ is the unique PD morphism $D \rightarrow D$ extending F_{Y}, and so it will suffice to show that F_{D} is in fact a PD-morphism. But if t is an element of the PD-ideal \bar{I} of X in D, then $F_{D}^{*}(t)=t^{p}=p!t^{[p]}=0$, and hence for any $n \geq 1, F_{D} \circ \gamma_{n}=\gamma_{n} \circ F_{D}=0$.

Note that $\mathcal{O}_{\tilde{D}} \otimes \Omega_{\tilde{Y} / W}$ is not the same as the the de Rham complex of \tilde{D}; the latter has a lot of p-torsion.

Lemma 2 In the following diagram, the lower triangle commutes, even though the upper one does not. (NB: here we always mean the p-adically completed de Rham complexes; and in particular we are dividing by the p-adic closure of the torsion in the lower right hand corner.)

Furthermore, the composite

$$
\bar{t}: \mathcal{O}_{\tilde{D}} \otimes \Omega_{\tilde{Y} / W}^{1} \longrightarrow \Omega_{\tilde{D} / W}^{1} /(\text { torsion })^{-}
$$

is an isomorphism.

Proof: The top horizontal arrow in the diagram is induced by adjunction. The algebra \mathcal{O}_{D} is locally generated over $\mathcal{O}_{\tilde{Y}}$ by the divided powers $f^{[n]}$ of elements f of the ideal of X in \tilde{Y}, for $n \geq 1$. For any such f, we have $\nabla f^{[n]}=f^{[n-1]} \otimes d f$ in $\mathcal{O}_{\tilde{D}} \otimes \Omega_{\tilde{Y} / W}^{1}[1,6.4]$. On the other hand, since $n!f^{[n]}=f^{n}$ and $n!f^{[n-1]}=n f^{n-1}$, we have

$$
n!d f^{[n]}=d\left(n!f^{[n]]}\right)=d f^{n}=n f^{n-1} d f=n(n-1)!f^{[n-1]} d f=n!f^{[n-1]} d f
$$

in $\Omega_{\tilde{D} / W}^{1}$. Thus $\nabla f^{[n]}$ and $d f^{[n]}$ have the same image in $\Omega_{\tilde{D} / W}^{1} /($ torsion $)$, so the lower triangle commutes.

Since $d: \mathcal{O}_{\tilde{D}} \rightarrow \Omega_{\tilde{D} / W}^{1}$ is the universal derivation to a p-adically complete sheaf of $\mathcal{O}_{\tilde{D}}$-modules, there is a unique map $s: \Omega_{\tilde{D} / W}^{1} \rightarrow \mathcal{O}_{\tilde{D}} \otimes \Omega_{\tilde{Y}}^{1}$ such that $s \circ d=\nabla$; this map factors through a map

$$
\bar{s}: \Omega_{\tilde{D} / W}^{1} /(\text { torsion })^{-} \rightarrow \mathcal{O}_{\tilde{D}} \otimes \Omega_{\tilde{Y}}^{1}
$$

Then

$$
\bar{t} \circ s \circ d=\pi \circ t \circ s \circ d=\pi \circ t \circ \nabla=\pi \circ d
$$

and it follows that $\bar{t} \circ s=\pi$ and hence that $\bar{t} \circ \bar{s}=\mathrm{id}$. On the other hand, if f is a local section of $\mathcal{O}_{\tilde{Y}}$, then f can also be viewed as a section of $\mathcal{O}_{\tilde{D}}$, and $\nabla f=1 \otimes d f$ in $\mathcal{O}_{\tilde{D}} \otimes \Omega_{\tilde{Y} / W}^{1}$. Thus the upper right triangle of the diagram does commute when restricted to $\mathcal{O}_{\tilde{Y}}$, and it follows that $\bar{s} \circ \bar{t}=\mathrm{id}$.

Since $\left(\tilde{D}, \phi_{\tilde{D}}\right)$ is a p-torsion free lifting of $\left(D, F_{D}\right)$ so by $[2,3.2 .1]$, there is an endomorphism F of the graded abelian sheaf $\Omega_{\tilde{D} / W}$ which gives it the structure of a Dieudonné algebra.

Lemma 3 The map t in Lemma 2 induces an isomorphism of Dieudonné algebras:

$$
w: \mathcal{W} S a t\left(\mathcal{O}_{\tilde{D}} \otimes \Omega_{\tilde{Y} / W}, d, F\right) \rightarrow \mathcal{W} \operatorname{Sat}\left(\Omega_{\tilde{D} / W}, d, F\right)
$$

Proof: By construction, the natural map

$$
\operatorname{Sat}\left(\Omega_{\tilde{D} / W}, d, F\right) \rightarrow \operatorname{Sat}\left(\Omega_{\tilde{D} / W}, d, F\right) /(\text { torsion })
$$

is an isomorphism, and hence so is the natural map

$$
\mathcal{W} S a t\left(\Omega_{\tilde{D} / W}, d, F\right) \rightarrow \mathcal{W} \operatorname{Sat}\left(\Omega_{\tilde{D} / W}, d, F\right) /(\text { torsion })^{-}
$$

since both are p-adically complete. Thus the result follows from the second statement of Lemma 2.

Since $\left(\tilde{D}, \phi_{\tilde{D}}\right)$ is a p-torsion free lifting of $\left(D, F_{D}\right),[2,4.2 .3]$ implies that there is an isomorphism of Dieudonné algebras:

$$
\mathcal{W} S a t\left(\Omega_{\tilde{D} / W}, d, F\right) \rightarrow\left(\mathcal{W} \Omega_{D}^{\cdot}, d . F\right)
$$

Thus we find a commutative diagram

We have seen that \bar{t} and w are isomorphisms. Since X is the reduced subscheme of D, the following lemma, which is a consequence of $[2,6.5 .2]$ and also of the easier [2,36.1], implies that g is also an isomorphism.

Lemma 4 If Z is scheme over \mathbf{F}_{p}, the natural map $Z_{\text {red }} \rightarrow Z$ induces an isomorphism $\mathcal{W} \Omega_{Z} \rightarrow \mathcal{W} \Omega_{Z_{\text {red }}}$.

We conclude that the natural map $\mathcal{W} \operatorname{Sat}\left(\mathcal{O}_{\tilde{D}} \otimes \Omega_{\tilde{Y} / W}\right) \rightarrow \mathcal{W} \Omega_{X}$ is an isomorphism, as asserted in the second statement of Theorem 1.

It remains to prove that the map $\mathcal{O}_{\tilde{D}} \otimes_{\tilde{Y} / W} \rightarrow \mathcal{W} \operatorname{Sat}\left(\mathcal{O}_{\tilde{D}} \otimes \Omega_{\tilde{Y} / W}\right)$ is a quasi-isomorphism. The complex $\mathcal{O}_{\tilde{D}} \otimes_{\tilde{Y} / W}$ is not of Cartier type, and I could not find a direct reference in [2] which proves this. But it suffices to copy some of its arguments. By [1, 8.20], applied to the constant gauge $\epsilon=0$, the morphism $\phi_{\tilde{D}}$ factors through a quasi-isomorphism

$$
\alpha: \mathcal{O}_{\tilde{D}} \otimes \Omega_{\tilde{Y} / W} \rightarrow \eta_{p}\left(\mathcal{O}_{\tilde{D}} \otimes \Omega_{\tilde{Y} / W}\right)
$$

It follows that $\eta_{p}^{n}(\alpha)$ is a quasi-isomorphism for every n, and hence that the map

$$
\mathcal{O}_{\tilde{D}} \otimes \Omega_{\tilde{Y} / W} \rightarrow \underset{\longrightarrow}{\lim } \eta_{p}^{n}\left(\mathcal{O}_{\tilde{D}} \otimes \Omega_{\tilde{Y} / W}\right)=\operatorname{Sat}\left(\mathcal{O}_{\tilde{D}} \otimes \Omega_{\tilde{Y} / W}\right)
$$

is also a quasi-isomorphism. Since both complexes are p-torsion free, this map remains a quasi-isomorphism when reduced modulo p^{n} for every n, and by $[2,2.8 .1]$, the map

$$
\operatorname{Sat}\left(\mathcal{O}_{\tilde{D}} \otimes \Omega_{\tilde{Y} / W}\right) \otimes \mathbf{Z} / p^{n} \mathbf{Z} \rightarrow \mathcal{W} \operatorname{Sat}\left(\mathcal{O}_{\tilde{D}} \otimes \Omega_{\tilde{Y} / W}\right) \otimes \mathbf{Z} / p^{n} \mathbf{Z}
$$

is also a quasi-isomorphism for every n. We conclude that the map

$$
\mathcal{O}_{\tilde{D}} \otimes \Omega_{\tilde{Y} / W} \rightarrow \mathcal{W} \operatorname{Sat}\left(\mathcal{O}_{\tilde{D}} \otimes \Omega_{\tilde{Y} / W}\right)
$$

is a quasi-isomorphism when reduced modulo p. Since both sides are p adically complete and p-torsion free, it follows that it too is a quasi-isomorphism. (not safe to pass to limit).

References

[1] P. Berthelot and A. Ogus. Notes on Crystalline Cohomology, volume 21 of Annals of Mathematics Studies. Princeton University Press, Princeton, 1978.
[2] B. Bhatt, J. Lurie, and A. Matthew. Revisiting the de Rham Witt complex. arXiv:1804.05501v1.
[3] L. Illusie. Complexe de de Rham Witt et cohomologie cristalline. Ann. Math. E.N.S., 12:501-601, 1979.
[4] L. Illusie. A new approach to de Rham Witt complexes, after Bhatt-Lurie-Mathew. In Conference: Thirty Years of Berkovich Spaces, 2018.

[^0]: ${ }^{1}$ It is hard to find an explicit construction of this isomorphism in [2], although of course it does follow from the comparison [2, 4.4.12] with the classical de Rham Witt complex and Illusie's theorem [II 1.4][3]. In fact Illusie explains a new version of the proof in his note [4]. The method presented here different. I would like to thank Illusie for very helpful conversations concerning it.

